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Abstract

The nucleation and growth of single wall carbon nanotubes from a carbon-saturated catalytic particle surrounded by a single

sheet of graphene is described qualitatively by using a very restricted number of elementary processes, namely Stone–Wales

defects and carbon bi-interstitials. Energies of the different configurations are estimated by using a Tersoff energy minimization

scheme. Such a description is compatible with a broad variety of size or helicity of the tubes. Several mechanisms of growth of

the embryos are considered: one of them is made more favourable when the tubes embryos are arranged in a hexagonal network

in the graphene plane. All the proposed mechanisms can be indefinitely repeated for the growth of the nanotubes.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since their discovery nearly fifteen years ago, single wall

carbon nanotubes (SWNT) have received considerable

interest from scientists: they are quite simple nanoscopic

objects, with fascinating physical properties; moreover,

their potential applications, in the field of nanosciences and

nanotechnology, are very promising. But one major

challenge is to control the growth of SWNTs, in particular

concerning their diameter and helicity. This is the reason

why a lot of literature was recently devoted to the

understanding of the catalytic nucleation and growth of

these tubes.

A typical situation is the high-temperature catalytic

growth of SWNTs: small metallic particles of Ni or Co are

heated in the presence of carbon, by arc discharge, laser

heating or CVD, which causes growth of bundles of SWNTs

perpendicular to the surface of the particles. Maiti et al. [1]
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suggest a general model which seems to get a broad

agreement: the metallic particles are oversaturated in

carbon, and a graphene layer wraps their surface. Embryos

of SWNTs, looking like half-fullerenes, can form on this

layer, and subsequently grow from their foot. These authors

present molecular-dynamics computations, using a Tersoff–

Brener potential, on (11,3) tubes taken as examples.

More recently, other reports on the same subject were

published. Gavillet et al. [2] presented a high-resolution

transmission electron microscopy study of such a root-

growth mechanism, completed by a computer-simulation

work using quantum molecular dynamics. The paper by

Kanzow et al. [3] is another example of a growth model ‘in

which precipitated graphene sheets detach from the surface

of a liquid catalyst particle, forming fullerenelike caps’.

Gavillet et al. [4] gave an interesting review of experimental

and theoretical results on SWNT nucleation and growth; in

particular, they stated that ‘a natural process is to imagine

that carbon atoms are incorporated at the root or at the tip

where ‘defects’ necessarily occur: heptagons at the root and

pentagons at the tip and/or metal-carbon bonds’ these

authors also addressed the role of the catalyst. Recently,
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Ding et al. [5] presented molecular dynamics calculations on

very small iron particles oversaturated with carbon, giving

rise to very irregular SWNTs.

The purpose of the present paper is to propose qualitative

ideas towards a better understanding of the nucleation and

growth of SWNTs. We show that a very small number of

elementary defect types are required to build SWNTs from a

graphene surface. We also address the case where tubes

grow inside a bundle.
Fig. 1. Embryo of a (12,0) zig-zag SWNT. The heptagons in the foot

of the embryo are hatched. We get an extra energy of 28.1 eV.
2. General ideas and tools

Our starting point consists in a graphene plane, on which

an embryo of SWNT will grow. In order to check the

stability and energy of the proposed defect geometries, we

performed energy minimizations by using the Tersoff model

[6]. We worked mainly with a nearly square portion of the

graphene plane of 240 carbon atoms, with periodic

boundary conditions in both directions of the plane. We

also considered the case of a network of embryos, using for

that purpose a diamond-shaped unit cell with suitable

periodic boundary conditions. Our energy computations do

not pretend to be very precise; they intend to give some

indications for comparing different possible configurations.

We consider three elementary defects in the graphene

plane:

(a) The Stone-Wales defect [7] is the simplest possible

point defect, which consists in a 908 rotation of a pair of

C atoms, with some rearrangement of the C – C

bounds: the net result is the transformation of four

hexagons into two heptagons and two pentagons. In our

configuration, it corresponds to an extra energy of

9.1 eV. This estimate is quite large compared to more

precise calculations from ab initio approaches [8,9]

which give energy values for the Stone-Wales(SW)

defect in the 5 – 6 eV range. We use, however the

Tersoff potential, due to its high simplicity; in spite of

its lack of accuracy, we believe that it can be useful for

comparing different growth scenarii.

(b) The bi-interstitial enables to add extra C atoms to the

graphene without generating dangling bonds (which

would be the case with single interstitials). Our model

for the bi-interstitial consists in adding atoms onto two

opposite sides of a hexagon. The net result is again two

heptagons and two pentagons, with a different topology

compared to the SW defect. It corresponds to an extra

energy of 11.9 eV (this energy is taken as the difference

with that of the same number of atoms if they were in a

perfect graphene sheet).

(c) The last defect is the dislocation. It is composed of a

pentagon – heptagon pair [10], the Burgers vector

(BV) being perpendicular to the pentagon – heptagon

axis. It is quite amusing to note that, in the very

different framework of grain growth, Cahn and
Padawer pointed out the existence of this defect in a

honeycomb network many years ago [11]. Like any

dislocation, it is topologically impossible to create ex

nihilo such a defect. It can only be created as a pair of

dislocations of opposite BV, or (we shall give

examples in the following) as a side effect of the

evolution of other defects. The energy of an isolated

dislocation is known to diverge logarithmically with

distance in an infinite crystal; however, in practice,

such a divergence being slow, and for a finite size of

samples or a finite distance between dislocations, an

energy value estimate can often be given. Building two

dislocations from such a dislocation pair in our finite

graphene sample, we estimate the individual dislo-

cation energy to be about 11 eV.

Elementary dislocation theory teaches that dislocations

can glide, along a line in the present 2D configuration: this

line is parallel to the Burgers vector, i.e. perpendicular to the

pentagon–heptagon axis. It is interesting to note that

Fig. 2(a) and (b) of Ref. [12] is an example of the creation

and glide of two such dislocations, evidenced in a numerical

simulation. In fact, it is quite straightforward that a

dislocation can glide by one polygon with a single SW

made on one edge of the heptagon. It is worth mentioning

that like classical 3D dislocations, two dislocations with

opposite BV must attract themselves.

The other defects mentioned before, the SW and the bi-

interstials, can also glide: both these defects can be seen as

made from two dislocations with opposite BV, which can

glide individually.
3. Nucleation of an embryo

Our model lies on the fact that an embryo is nucleated

in the graphene plane, so that it can grow from the foot,

perpendicularly to the plane. The cap of the embryo looks

like a half-sphere, which means, as many authors

remarked, that—from Euler’s theorem—it contains exactly

six pentagons (in reality, topology only dictates that, when

the polygons are forced to be heptagons, hexagons or

pentagons, the difference between the number of
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heptagons and pentagons must be six). As a consequence,

there must be exactly six heptagons around the foot of the

embryo.

We have constructed some embryos by adding bi-

interstitials in the graphene plane. For instance, a (12,0)

zig-zag embryo could be built by adding 24 interstitials

(12 bi-interstitials), which generated 12 new polygons.

Such an embryo is shown in Fig. 1. The Tersoff energy

minimization gives an energy of 28.1 eV for this

embryo.
Fig. 3. Six Stone–Wales transforms are made on the pattern shown

in Fig. 2. The heptagons in the foot of the embryo are hatched. The

dislocations (pentagons plus heptagons) are grayed. We get an extra

energy of 52.7 eV.
4. Growth

In order to make the (12,0) embryo grow one row, it is

necessary to add 12 hexagons, that is 24 interstitials. There

are several possibilities for adding these interstitials.

If the 12 bi-interstitials are added in the 12 polygons

(six hexagons and six heptagons) which form the first ring of

the embryo, the net result is the growth of the tube without

creating any supplementary defect. The final energy of the

tube is about 30 eV, which is only slightly more than that of

the embryo. Adding the bi-interstitials not at once, but one

after the other, the energy increases much more, passing

through a maximum of 9 eV above. It is clear that this

growing process can be repeated ad libitum, making the tube

grow indefinitely.

The fact that, in this process, interstitials are not added in

the basal graphene plane, but on the side of the embryo, can

be questionable if the C atoms come from the inside of the

supersaturated metallic particle. We wish thus, to suggest

here a second possible process.

Adding the 12 bi-interstitials in the closest ring of

hexagons next to the foot of the embryo gives the

arrangement shown in Fig. 2, with an energy of 72.0 eV,

which is a much higher value; we discuss this value below.

Now, near the foot of the tube, a lot of defects are present:

six octagons and 12 pentagons (they are grayed in Fig. 2).

These defects have to be eliminated by some kind of glide
Fig. 2. Twenty-four carbon interstitials are added on the foot of the

embryo of a (12,0) SWNT. The heptagons in the foot of the embryo

are hatched. The pentagons and octagons are grayed. We get an

extra energy of 72.0 eV.
movement in order to get a realistic defect-free growing

process. This can be done quite easily, in two steps:

(a) The first one is required by the fact that the heptagons,

shown hatched in Fig. 2, have to go down back to the

foot of the tube. For doing that, 6 SW processes on the

bounds between heptagons and octagons are done,

which suppress also six of the pentagons and replace

the six octagons by six heptagons: this is clearly shown

in Fig. 3. The energy is now 52.7 eV. The net result is a

(12,0) tube, grown by one row, plus, near its foot, six

pentagon – heptagon pairs which are six dislocations,

with the six possible BV values (the sum of these BV

is, of course, zero).

(b) The second step must be performed in order to

annihilate these dislocations. This can be done quite

simply by six new SW processes, which are done on the

six bounds common to two heptagons. After doing this,

we are left with a perfect (12,0) tube, with an energy of

30.4 eV (Fig. 4).

It is interesting to address more in detail the problem of

the energy values, which seem to be much higher in the
Fig. 4. Six more Stone–Wales transforms are made on the pattern

shown in Fig. 3. The embryo of Fig. 1 has grown of one row. The

heptagons in the foot of the embryo are hatched. We get an extra

energy of 30.4 eV.



Fig. 5. Embryos of (12,0) SWNTs, seen from above, arranged in an

hexagonal network. In this case, the growth is possible without

creation of dislocations (see text).
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second process described above. Reality is more complex:

Figs. 2–4 show quite clearly what are the steps involved in

the tube growth, but they are certainly not the most

economical path for this growth. It is much better to do

things like the following, from the embryo of Fig. 1:

– Introducing four interstitials near the foot of the embryo,

giving birth to one octagon and two pentagons.

– Making a first SW to transform these defects into one

dislocation.

– Making a second SW to annihilate the dislocation.

– Repeating five more times these three steps, which gives

finally the situation depicted in Fig. 4.

We have done this step-to-step process and monitored

the energy, whose maximum proved to be of the order of

16 eV above the energy of the perfect embryo. This is a

collar energy, substantially higher than the one we have to

pass in the first defect-free process (however, the total

energy is then about 44 eV, much lower than that of the

configuration in Fig. 2). But the second process has the

advantage of enabling the addition of carbon interstitials in

the graphene basal plane, not on the sides of the embryo.

We finally tried to figure out what can be gained from

considering a network of embryos instead of an isolated one.

We found that when putting embryos in an suitable

hexagonal network (Fig. 5), the second process described

above could be made a little simpler: after addition of 24

interstitials per embryo, step (a) described above has to be

done in order to bring down the heptagons. But step (b), with

its 6 SW, is no longer needed: dislocations annihilate three

by three, between neighbouring embryos. This simplifica-
tion corresponds to an interesting gain in energy, the collar

value being about 10 eV above the embryo energy. This is of

the same order of magnitude as the first defect-free process.

We can also remark that this process of growth of SWNT

bundles does not require that all tubes have the same

helicity: it is sufficient that the geometry of the six created

dislocations near the foot of each tube is the same, which is

much less restricting.

We point out that it would be interesting to get values for

the energy barriers, which the present calculations, taken at

equilibrium, do not enable. However, it remains difficult to

understand how these growth processes involving very large

energies can be efficient in quasi-equilibrium processes. An

interesting possibility, considered by several authors [4,9],

is that catalytic effects can reduce the energies involved.
5. Conclusion

We have shown that the nucleation and growth of carbon

nanotubes from a graphene basal plane can be qualitatively

described with a small number of elementary processes,

each of them corresponding to a moderate amount of

energy. Such a description does not depend on the size or

helicity of the tubes. Several mechanisms can be considered:

one of them is made more favourable when the tubes

embryos are arranged in an hexagonal network in the plane.

All the proposed mechanisms can be indefinitely repeated,

giving rise to a possible endless growth of the nanotubes.
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